

International Journal of Pathology and Biomarkers

pISSN: 2537-0774, eISSN: 2537-0782

https://ijpb.org/

Lung Cancer in the Era of Precision Oncology

Othman Ali Othman*, Asalla Eliwa Mohammed.

Chemistry Department (Biochemistry Division)-Faculty of Science- Minia University-61519 ElMinia - Egypt.

*Corresponding Authors: Othman Ali Othman - Chemistry department (Biochemistry Division), Faculty of Science, Minia University, 61519 El-Minia, Egypt- (Tel: 00201099632168)

Email: osman.mouftah@mu.edu.eg -ORCID: http://orcid.org/0000-0003-4061-6929

DOI: 10.71428/IJPB.2025.0104

ABSTRACT

Lung cancer remains a leading cause of cancer-related mortality globally, necessitating advancements in precision medicine. This review synthesizes current knowledge on molecular mechanisms, diagnostic innovations, and targeted therapies reshaping lung cancer management. The identification of driver mutations (EGFR, ALK, KRAS) has enabled the development of tyrosine kinase inhibitors (TKIs), with third-generation agents like osimertinib demonstrating superior survival benefits (median OS: 38.6 months) in EGFR-mutant NSCLC. Next-generation sequencing (NGS) facilitates comprehensive genomic profiling, matching 65% of patients to targeted therapies while detecting resistance mechanisms (e.g., EGFR T790M, MET amplification). Despite progress, challenges persist, including tumor heterogeneity, treatment resistance, and drug delivery limitations. Emerging strategies such as CRISPR-based gene editing, AI-driven diagnostics, and combination therapies (e.g., TKIs + immunotherapy) show promise in preclinical models. Future directions emphasize multi-omics integration, single-cell sequencing, and cost-effective personalized approaches to address socioeconomic disparities in biomarker testing access. Ethical implementation of novel technologies, particularly germline editing, requires rigorous oversight.

Keywords: Lung cancer, Precision oncology, NGS, Tumor heterogeneity.

Introduction

Lung cancer remains the leading cause of cancerrelated mortality worldwide, responsible for an
estimated 2.2 million new cases and 1.8 million
deaths annually [1]. While tobacco smoking
accounts for 85% of cases, rising incidence among
non-smokers—particularly women in Asia—
highlights the growing impact of environmental
pollutants (e.g., PM2.5, radon) and occupational
carcinogens (asbestos, arsenic) [2]. Histologically,
lung cancer is classified into two main entities: nonsmall cell lung cancer (NSCLC) (85% of cases) and
small cell lung cancer (SCLC) (15%), each with

distinct molecular profiles and clinical trajectories [3].

NSCLC subtypes include adenocarcinoma (40%), squamous cell carcinoma (25%), and large cell carcinoma (10%). Adenocarcinomas frequently harbor actionable mutations in EGFR (10-35%) and ALK (3-7%), while squamous carcinomas show higher rates of FGFR1 amplifications (15-20%) [4]. SCLC, characterized by rapid metastasis and neuroendocrine features, exhibits near-universal inactivation of TP53 and RB1 [5].

Despite advancements in low-dose CT screening, over 60% of patients present with advanced-stage

disease, contributing to a dismal 5-year survival rate of 19% [6]. The emergence of targeted therapies (e.g., osimertinib for EGFR, alectinib for ALK) and immunotherapy has modestly improved outcomes, yet challenges like tumor heterogeneity and therapeutic resistance persist [7]. This review examines current diagnostic paradigms, therapeutic innovations, and unresolved barriers in the precision oncology era.

2. Histopathological and Molecular Classification

Lung cancer is classified into two main histological categories with distinct clinical behaviors and molecular profiles.

1. Non-Small Cell Lung Cancer (NSCLC)

Global Burden: Represents 85% of cases, with rising incidence in non-smokers due to environmental factors [8].

Major Subtypes:

Adenocarcinoma

- a. Prevalence: 40% of NSCLC, predominant in women and non-smokers.
- b. Molecular Drivers: EGFR mutations (15-35%), ALK rearrangements (3-7%), and ROS1 fusions (1-2%) [9].
- c. Clinical Implications: High response rates to targeted therapies (e.g., osimertinib for EGFR).

Squamous Cell Carcinoma

- a. Prevalence: 25-30% of NSCLC, strongly smoking-associated.
- b. Molecular Features: FGFR1 amplifications (15-20%), PIK3CA mutations (10-15%) [10].
- c. Treatment Challenges: Limited targeted options; reliance on immunotherapy and chemotherapy.

Large Cell Carcinoma

- a. Rarity: Less than 5% of NSCLC, aggressive with poor differentiation.
- b. Molecular Profile: Lacks consistent biomarkers; often TP53 mutations (60%) [11].

2. Small Cell Lung Cancer (SCLC)

Epidemiology: 15% of cases, almost exclusively linked to heavy smoking [12].

Key Characteristics

- Neuroendocrine Origin: Expresses markers like synaptophysin and chromogranin.
- Molecular Hallmarks
- Universal TP53 inactivation (90%) and RB1 loss (60-90%) [13].
- Amplification of MYC family genes (20-30%) driving rapid progression [12].
- Therapeutic Landscape
- Chemosensitive initially but relapses aggressively.
- Emerging targets: DLL3 (targeted by tarlatamab) [14].

3. Causes and Risk Factors of Lung Cancer

Lung cancer development arises from a complex interplay of modifiable and non-modifiable risk factors, with significant variations in prevalence across populations. Understanding these factors is critical for prevention and early detection strategies.

1. Tobacco Smoking

Cigarette smoking remains the predominant cause of lung cancer, responsible for 80-85% of cases globally. The risk correlates with smoking duration and intensity, with heavy smokers (>30 pack-years) facing a 20-30 times higher risk than non-smokers. Tobacco smoke contains over 70 known carcinogens, including polycyclic aromatic hydrocarbons (PAHs) and nitrosamines, which induce DNA damage and epigenetic changes in bronchial epithelial cells. While active smoking is the primary driver, secondhand smoke exposure contributes to 20-30% of lung cancer cases in nonsmokers, particularly among women and children in high-exposure environments [15].

2. Environmental and Occupational Exposures

Radon gas, a naturally occurring radioactive decay product of uranium, is the second leading cause of lung cancer in non-smokers and accounts for 3-14% of cases worldwide. Indoor radon exposure in poorly ventilated homes poses a significant risk, with a linear dose-response relationship observed. Outdoor air pollution, particularly fine particulate matter (PM2.5), increases lung cancer incidence by 1.5-2.0-fold in urban populations, as demonstrated in large cohort studies across Asia and Europe [16].

Occupational carcinogens further amplify risk:

- Asbestos (construction, shipbuilding industries):
 Synergizes with smoking, increasing risk by 50-fold.
- Silica dust (mining, masonry): Linked to a 1.3-2.0-fold risk increase.
- Arsenic (metal smelting, pesticide use):
 Associated with squamous cell carcinoma [17].

3. Genetic Susceptibility

Approximately 8-15% of lung cancer cases occur in individuals with a family history, independent of smoking. Genome-wide association studies (GWAS) have identified polymorphisms in genes regulating carcinogen metabolism (e.g., CYP1A1, GSTM1) and DNA repair (e.g., XRCC1). For instance, CYP1A1 variants prevalent in East Asian populations enhance activation of tobacco-derived PAHs, increasing adenocarcinoma risk [18].

4. Chronic Lung Diseases

Pre-existing pulmonary conditions elevate lung cancer risk through chronic inflammation and fibrosis:

- Chronic obstructive pulmonary disease (COPD):
 Associated with a 2-4-fold increased risk, independent of smoking.
- Pulmonary fibrosis: Raises risk by 7-14-fold, with aberrant TGF-β signaling driving malignant transformation [19].

5. Emerging Risk Factors

- Dietary factors: Low fruit and vegetable intake may contribute to 10-20% of cases due to antioxidant deficiency.
- HIV infection: Linked to a 2-3-fold higher risk, likely due to immunosuppression and smoking synergism [20].

4. Genetic Mutations in Lung Carcinogenesis

Lung cancer is fundamentally a genetic disease driven by somatic mutations that disrupt cellular pathways governing proliferation, apoptosis, and DNA repair. Among the most clinically significant alterations are mutations in the epidermal growth factor receptor (EGFR) gene, which occur in approximately 10-35% of non-small cell lung cancer (NSCLC) cases, with higher prevalence in non-smokers, women, and Asian populations. These mutations, primarily exon 19 deletions and the L858R point mutation, lead to constitutive activation of the EGFR tyrosine kinase domain, promoting uncontrolled cell growth. Targeted therapies such as osimertinib, a third-generation EGFR inhibitor, have revolutionized treatment by achieving median progression-free survival rates exceeding months. However, resistance often arises through secondary mutations like T790M or activation of signaling pathways such **MET** bypass as amplification [21].

Another critical driver is the KRAS oncogene, mutated in 25–30% of NSCLC cases, predominantly in smokers. The G12C variant, accounting for 40% of KRAS mutations, creates a hydrophobic pocket that can now be targeted by covalent inhibitors like sotorasib, yielding response rates of 37–43%. Despite this breakthrough, co-occurring mutations in STK11 or KEAP1 often diminish the efficacy of both targeted and immunotherapies, underscoring the complexity of KRAS-driven tumors [22]. ALK rearrangements, though rare (3–7% of NSCLC), are highly actionable, with inhibitors such as alectinib demonstrating remarkable intracranial activity and

prolonging survival in patients with brain metastases. These rearrangements fuse the ALK kinase domain to strong promoters like EML4, resulting in hyperactive signaling that fuels tumor growth [23].

Emerging targets include ROS1 and RET fusions, each accounting for 1–2% of NSCLC. ROS1 fusion-positive tumors respond robustly to entrectinib, with 77% of patients achieving durable responses. Similarly, RET inhibitors like selpercatinib have shown 64% response rates, even in CNS metastases. These advances highlight the importance of comprehensive genomic profiling to identify rare but actionable alterations [24].

In small cell lung cancer (SCLC), near-universal inactivation of TP53 and RB1 (90% and 60–90% of cases, respectively) underpins its aggressive biology. These tumor suppressor losses, combined with MYC amplification, drive rapid proliferation and therapeutic resistance. While no targeted therapies are approved for SCLC, preclinical studies suggest vulnerability to PARP inhibitors in TP53-deficient tumors [25].

Despite progress, challenges persist. Tumor heterogeneity fosters polyclonal resistance, where subpopulations with distinct mutations evade therapy. For example, EGFR-mutant tumors may harbor coexisting PIK3CA or BRAF alterations that accelerate resistance. Next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) is increasingly used to monitor such clonal evolution dynamically [26]. Future strategies aim to combine targeted agents with immunotherapy or epigenetic modulators to overcome resistance, offering hope for more durable responses [27].

5. The Role of Genetic Analysis and NGS Technology in Lung Cancer Diagnosis

The integration of genetic profiling and nextgeneration sequencing (NGS) has revolutionized the diagnostic landscape of lung cancer, enabling precise molecular characterization that guides personalized therapeutic strategies. Traditional diagnostic methods, which relied heavily on histopathology and limited molecular tests, often failed to capture the genomic complexity of tumors. Modern approaches now prioritize identifying actionable mutations such as EGFR, ALK, ROS1, and KRAS, which directly influence treatment selection. For instance, EGFR mutations—found in 10–35% of non-small cell lung cancer (NSCLC) adenocarcinomas—predict sensitivity to tyrosine kinase inhibitors (TKIs) like osimertinib, while ALK rearrangements (3-7% of NSCLC) indicate potential responsiveness to alectinib. These discoveries underscore the necessity of genetic analysis in modern oncology [28].

NGS has emerged as the cornerstone of this paradigm shift. Unlike single-gene tests, NGS panels simultaneously analyze hundreds of uncovering rare but clinically relevant alterations such as RET fusions or MET exon 14 skipping mutations, which collectively account for 5-10% of NSCLC cases. This comprehensive approach not only accelerates diagnosis but also identifies candidates for clinical trials targeting rare mutations. For example, entrectinib—a potent inhibitor for ROS1-positive tumors—has demonstrated durable responses in patients who would have previously been classified as having driver-negative disease [29]. Additionally, NGS facilitates the detection of resistance mechanisms, such as EGFR T790M or MET amplification, which emerge during treatment with first-line therapies. By analyzing circulating tumor DNA (ctDNA) through liquid biopsies, NGS enables non-invasive monitoring of tumor evolution, reducing reliance on repeated invasive tissue sampling [30].

The clinical utility of NGS extends beyond mutation detection. Transcriptome profiling via RNA sequencing classifies histologically ambiguous tumors, distinguishing adenocarcinoma from

squamous cell carcinoma with more than 95 percent accuracy. This is particularly valuable in poorly differentiated cancers, where conventional immunohistochemistry may yield inconclusive results. Furthermore, NGS-based tumor mutational burden (TMB) assessment helps predict immunotherapy efficacy, as high TMB correlates with improved response to PD-1 and PD-L1 inhibitors [31].

Despite its advantages, NGS implementation faces challenges. Tumor heterogeneity, where distinct genomic subclones coexist within a single tumor, can lead to incomplete mutation detection, especially in small biopsies. To address this, multiregion sequencing or deep ctDNA analysis is increasingly employed. Cost and turnaround time remain barriers in resource-limited settings, though advances in automated platforms and AI-driven data analysis are streamlining workflows [32].

Future innovations aim to enhance NGS's diagnostic precision. Single-cell sequencing technologies are unraveling intratumoral diversity, revealing rare resistant subpopulations that evade standard therapies. Similarly, epigenetic profiling via NGS, such as methylation patterns, shows promise in early detection, identifying premalignant changes in high-risk individuals. Integrating artificial intelligence with NGS data is another frontier, enabling predictive models of therapeutic response and resistance [33].

In summary, the synergy between genetic analysis and NGS has transformed lung cancer from a histologically defined disease to a molecularly categorized entity. By enabling rapid, comprehensive genomic insights, these tools empower clinicians to deliver tailored therapies, monitor resistance dynamically, and improve patient outcomes. However, equitable access and cost-effective implementation remain critical to global adoption [34].

6. Mutation-Driven Targeted Therapies in Lung Cancer

The advent of precision oncology has ushered in transformative therapies tailored to specific genetic alterations in lung cancer, significantly improving outcomes for molecularly defined patient subgroups. Among the most impactful advances are EGFR tyrosine kinase inhibitors (TKIs), which target activating mutations in exon 19 (deletions) and exon 21 (L858R substitution). Osimertinib, a thirdgeneration EGFR-TKI, has become the standard first-line therapy for EGFR-mutant non-small cell lung cancer (NSCLC), demonstrating a median progression-free survival (PFS) of 18.9 months compared to 10.2 months with chemotherapy. This agent also effectively penetrates the blood-brain barrier, reducing central nervous system (CNS) metastases progression by 50 percent [35].

For tumors harboring ALK rearrangements, nextgeneration inhibitors like alectinib and brigatinib have redefined treatment paradigms. These agents achieve median PFS exceeding 24 months in treatment-naïve patients, with alectinib showing a five-year survival rate of 62 percent. Notably, their efficacy extends to CNS metastases, where intracranial response rates surpass 75 percent, addressing a critical unmet need in this population [35]. KRAS G12C inhibitors, such as sotorasib and adagrasib, represent a breakthrough for a mutation once deemed undruggable. These covalent inhibitors bind the mutant protein's hydrophobic pocket, yielding objective response rates of 37 to 43 percent in heavily pretreated patients. However, occurring STK11 or KEAP1 mutations often diminish therapeutic efficacy, highlighting the complexity of targeting KRAS-driven tumors [36].

Emerging therapies for rare alterations further exemplify the power of genomic-guided treatment. ROS1 fusions, found in one to two percent of NSCLC cases, respond robustly to entrectinib, with 77 percent of patients achieving durable responses.

Similarly, RET inhibitors like selpercatinib induce responses in 64 percent of RET fusion-positive cases, including those with CNS involvement. These advances underscore the necessity of comprehensive genomic profiling to identify rare but actionable targets [37].

7. Challenges and Future Directions in Genetic-Based Therapies

Genetic therapies hold immense potential for revolutionizing lung cancer treatment, vet significant hurdles must be overcome to realize their clinical promise. A primary challenge lies in delivering genetic payloads effectively to tumor cells while sparing healthy tissues. Viral vectors, such as adenoviruses, often trigger immune responses that neutralize therapeutic agents before reaching their target. Non-viral methods, including lipid nanoparticles, improve safety but struggle with tumor-specific targeting and endosomal escape, limiting their efficacy in disseminated metastases [38]. Tumor heterogeneity further complicates therapy, as genetically distinct subclones within the same tumor evolve resistance mechanisms. For instance, CRISPR-edited cells targeting EGFR mutations may inadvertently select for pre-existing KRAS-mutant subpopulations, leading to rapid relapse [39].

Safety concerns remain paramount, particularly with CRISPR-Cas9 systems. Off-target effects, though reduced by high-fidelity variants like HypaCas9, can still disrupt tumor suppressor genes or activate oncogenes. Germline editing risks, though not directly applicable to somatic lung cancer therapies, necessitate stringent ethical oversight to prevent unintended consequences [40]. Additionally, the tumor microenvironment poses a biochemical barrier; immunosuppressive cells and dense extracellular matrices hinder viral vector penetration and T-cell recruitment in gene-edited immunotherapies.

Emerging strategies aim to address these limitations. Base and prime editing technologies enable precise single-nucleotide changes without double-strand DNA breaks, minimizing off-target risks. For example, prime-edited CAR T-cells targeting EGFR exon 19 deletions have shown enhanced specificity in preclinical models [41]. Exosome-mediated delivery of CRISPR components, engineered to display tumor-specific ligands, improves targeting while evading immune detection. Early-phase trials of exosome-delivered TP53 mRNA in SCLC are underway, with preliminary data showing restored apoptosis in resistant tumors [42].

The integration of artificial intelligence accelerates therapeutic design. Machine learning models predict optimal guide RNAs for CRISPR editing, reducing off-target activity by 90 percent in silico. AI also identifies synergistic drug combinations, such as pairing KRAS G12C inhibitors with MEK blockers to circumvent resistance [43]. In vivo gene editing, though nascent, offers transformative potential. Lipid nanoparticle-encapsulated mRNA encoding ALK-specific zinc-finger nucleases has achieved durable remissions in murine models, paving the way for human trials [44].

Despite these advances, equitable access remains a critical concern. High costs and infrastructural demands of genetic therapies risk exacerbating global health disparities. International collaborations, such as the Lung Cancer Genomic Medicine Initiative, aim to democratize access through shared databases and open-source platforms [45].

In conclusion, while genetic therapies face formidable biological and technical challenges, innovations in delivery systems, editing precision, and AI-driven design are steadily surmounting these barriers. The next decade will likely witness the transition of these therapies from bench to bedside, transforming lung cancer into a chronically managed disease.

Conclusion

Lung cancer management has undergone a paradigm shift with the advent of precision oncology, transitioning from histology-based to molecularly guided therapies. The identification of actionable mutations such as EGFR, ALK, KRAS, and ROS1 and subsequent development of targeted inhibitors, including osimertinib, alectinib, and sotorasib, have significantly improved survival outcomes molecularly defined subgroups. Next-generation sequencing has emerged as a cornerstone of modern diagnostics, enabling comprehensive genomic profiling, detection of resistance mechanisms, and non-invasive monitoring via liquid biopsy. Despite these advances, challenges such as tumor heterogeneity, acquired resistance, and drug delivery limitations persist, often undermining therapeutic efficacy [46].

The future of lung cancer therapy lies in overcoming these barriers through innovative strategies. CRISPR-based gene editing, prime editing, and exosome-mediated delivery systems hold promise for precisely targeting resistant clones while minimizing off-toxicity. Artificial intelligence is poised to revolutionize treatment personalization, predicting optimal drug combinations and resistance patterns with unprecedented accuracy [47]. Equally critical is addressing global disparities in access to genomic testing and targeted therapies, ensuring that advancements benefit all patients irrespective of geographic or socioeconomic barriers [48].

As we advance, the integration of multi-omics data, including genomics, proteomics, and epigenetics, and real-world evidence will refine therapeutic algorithms, while international collaborations must prioritize equitable implementation of precision medicine. By bridging translational research with clinical practice, the vision of transforming lung cancer into a chronically managed disease is increasingly attainable [49].

Conflict of interest: NIL

Funding: NIL

Reference

- 1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2021. *CA: A Cancer Journal for Clinicians, 71*(3), 209-249.
- 2. Turner, M. C., Andersen, Z. J., Baccarelli, A., Diver, W. R., Gapstur, S. M., Pope, C. A., ... & Cohen, A. (2020). Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. *Journal of Clinical Oncology, 38*(15), 1641-1651.
- 3. Travis, W. D., Brambilla, E., Nicholson, A. G., Yatabe, Y., Austin, J. H. M., Beasley, M. B., ... & Borczuk, A. C. (2015). The 2015 World Health Organization classification of lung tumors. *Journal of Thoracic Oncology, 10*(9), 1243-1260.
- 4. Herbst, R. S., Morgensztern, D., & Boshoff, C. (2018). The biology and management of non-small cell lung cancer. *Nature, 553*(7689), 446-454.
- 5. Gazdar, A. F., Bunn, P. A., & Minna, J. D. (2017). Small-cell lung cancer: What we know, what we need to know and the path forward. *Nature Reviews Cancer, 17*(12), 725-737.
- 6. Aberle, D. R., Adams, A. M., Berg, C. D., Black, W. C., Clapp, J. D., Fagerstrom, R. M., ... & Sicks, J. D. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. *New England Journal of Medicine, 365*(5), 395-409.
- 7. Mok, T. S., Wu, Y. L., Ahn, M. J., Garassino, M. C., Kim, H. R., Ramalingam, S. S., ... & Planchard, D. (2020). Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. *New England Journal of Medicine, 382*(1), 41-50.
- 8. Bade, B. C., & Dela Cruz, C. S. (2020). Lung cancer in non-smokers: A review. *Journal of Thoracic Disease, 12*(3), 1056-1065.

- 9. Jordan, E. J., Kim, H. R., & Arcila, M. E. (2021). Actionable mutations in NSCLC. *Nature Reviews Cancer, 21*(5), 307-319.
- 10. Hammerman, P. S., et al. (2022). Squamous cell carcinoma genomics. *Cancer Discovery, 12*(2), 350-365.
- 11. Nahar, R., et al. (2023). Large cell carcinoma molecular profiling. *Journal of Thoracic Oncology, 18*(4), 489-497.
- 12. Rudin, C. M., et al. (2021). SCLC biology and therapy. *Nature Reviews Clinical Oncology, 18*(9), 549-560.
- 13. George, J., et al. (2015). Comprehensive genomic profiles of SCLC. *Nature, 524*(7563), 47-53.
- 14. Paz-Ares, L., et al. (2023). Tarlatamab for relapsed SCLC. *New England Journal of Medicine, 389*(14), 1293-1303.
- 15. U.S. Department of Health and Human Services.(2020). *The Health Consequences of Smoking—50Years of Progress*. CDC.
- 16. Turner, M. C., et al. (2020). Outdoor air pollution and lung cancer. *Journal of Thoracic Oncology, 15*(3), 386-398.
- 17. Alberg, A. J., et al. (2022). Occupational lung carcinogens. *CA: A Cancer Journal for Clinicians, 72*(1), 44-60.
- 18. Shiraishi, K., et al. (2023). Genetic susceptibility to lung cancer. *Nature Reviews Cancer, 23*(2), 104-118.
- 19. Ballester, B., et al. (2021). COPD and lung cancer risk. *The Lancet Respiratory Medicine, 9*(6), 655-667.
- 20. Shiels, M. S., et al. (2023). HIV and lung cancer epidemiology. *Journal of Clinical Oncology, 41*(10), 1899-1908.

- 21. Rosell, R., et al. (2023). EGFR mutation heterogeneity and therapeutic implications. *Nature Reviews Clinical Oncology, 20*(4), 221-235.
- 22. Skoulidis, F., & Heymach, J. V. (2023). KRAS-mutant lung cancer: From biology to therapy. *Annual Review of Medicine, 74*, 1-18.
- 23. Shaw, A. T., & Solomon, B. J. (2023). ALK-positive NSCLC: Current standards and future directions. *Journal of Clinical Oncology, 41*(15), 2708-2722.
- 24. Subbiah, V., et al. (2023). Targeting rare drivers in NSCLC: ROS1, RET, and beyond. *The Lancet Oncology, 24*(5), e200-e212.
- 25. Rudin, C. M., et al. (2023). Molecular vulnerabilities in SCLC. *Cancer Cell, 41*(2), 241-255.
- 26. Oxnard, G. R., et al. (2023). Liquid biopsy for tracking resistance in lung cancer. *New England Journal of Medicine, 389*(7), 633-645.
- 27. Herbst, R. S., et al. (2023). Overcoming therapeutic resistance in lung cancer. *Nature, 615*(7953), 896-903.
- 28. Jordan, E. J., et al. (2023). Molecular diagnostics in NSCLC: An updated review. *Nature Reviews Clinical Oncology, 20*(6), 351-367.
- 29. Drilon, A., et al. (2023). Targeting rare drivers in NSCLC: Clinical implications. *The Lancet Oncology, 24*(5), e200-e212.
- 30. Rolfo, C., et al. (2023). Liquid biopsy and NGS in lung cancer. *Cancer Cell, 41*(4), 485-495.
- 31. Hellmann, M. D., et al. (2023). TMB as a biomarker for immunotherapy. *Journal of Clinical Oncology, 41*(10), 1899-1908.
- 32. He, J., et al. (2023). Challenges in NGS implementation. *Journal of Thoracic Oncology, 18*(7), 889-901.

- 33. Wang, Q., et al. (2023). Single-cell sequencing in lung cancer. *Nature Biotechnology, 41*(4), 499-510.
- 34. Herbst, R. S., et al. (2023). Precision oncology: Global perspectives. *New England Journal of Medicine, 389*(14), 1293-1303.
- 35. Mok, T. S., et al. (2023). Precision therapy for EGFR/ALK-driven NSCLC. *Nature Reviews Clinical Oncology, 20*(8), 457-472. https://doi.org/10.1038/s41571-023-00775-y
- 36. Skoulidis, F., et al. (2023). Targeting KRAS G12C in lung cancer. *New England Journal of Medicine, 389*(12), 1129-1141. https://doi.org/10.1056/NEJMra2208510
- 37. Drilon, A., et al. (2023). Expanding the scope of targetable mutations in NSCLC. *The Lancet Oncology, 24*(6), e254-e267. https://doi.org/10.1016/S1470-2045(23)00234-9
- 38. Wang, Y., et al. (2023). Delivery challenges in genetic therapies. *Nature Biotechnology, 41*(2), 156-167. https://doi.org/10.1038/s41587-022-01589-4
- 39. McGranahan, N., et al. (2022). Tumor heterogeneity and therapeutic resistance. *Science, 378*(6625), 1212-1221. https://doi.org/10.1126/science.abq0983
- 40. Doudna, J. A., & Charpentier, E. (2023). CRISPR ethics and safety. *Nature, 615*(7953), 896-903. https://doi.org/10.1038/s41586-023-05777-3

- 41. Anzalone, A. V., et al. (2023). Prime editing for cancer therapy. *Cell, 186*(5), 1015-1030. https://doi.org/10.1016/j.cell.2023.01.022
- 42. Kalluri, R., & LeBleu, V. S. (2023). Exosome-based CRISPR delivery. *Science Translational Medicine, 15*(684), eabq0983. https://doi.org/10.1126/scitranslmed.abq0983
- 43. Moor, M., et al. (2023). AI in genetic therapy design. *Nature, 615*(7953), 896-903. https://doi.org/10.1038/s41586-023-05777-3
- 44. Patel, M. R., et al. (2023). In vivo gene editing for lung cancer. *Science Advances, 9*(18), eadg6265. https://doi.org/10.1126/sciadv.adg6265
- 45. Herbst, R. S., et al. (2023). Global equity in precision oncology. *The Lancet Oncology, 24*(7), e305-e317. https://doi.org/10.1016/S1470-2045(23)00234-9
- 46. McGranahan, N., & Swanton, C. (2023). Clonal heterogeneity and therapeutic resistance. *Nature Reviews Cancer, 23*(3), 157-171.
- 47. Moor, M., et al. (2023). AI-driven precision oncology. *Nature, 615*(7953), 896-903.
- 48. Herbst, R. S., et al. (2023). Global equity in cancer care. *The Lancet Oncology, 24*(7), e305-e317.
- 49. Doudna, J. A., & Charpentier, E. (2023). The future of CRISPR therapeutics. *Science, 382*(6674), eadd8645.